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Abstract: Regulation of the sleep-waking cycle is complex and involves diverse brain circuits and molecules. On one 

hand, an interplay among many neuroanatomical and neurochemical systems including acetylcholine, dopamine, 

noradrenaline, serotonin, histamine, and hypocretin has been shown to control the waking state. On the other hand the 

sleep-onset is governed by the activity of sleep-promoting neurons placed in the anterior hypothalamus that utilize GABA 

to inhibit wake-promoting regions. Moreover, brainstem regions inhibited during wakefulness (W) and slow wave sleeps 

(SWS) become active during rapid eye movement (REM) sleep. Further complexity has been introduced by the 

recognition of sleep-promoting molecules that accumulate in the brain in prolonged W as well as the physiological role of 

gene expression during sleep. The sleep-wake cycle is currently undergoing intense research with many new findings 

leading to new paradigms concerning sleep regulation, brain organization and sleep function. This review provides a 

broader understanding of our present knowledge in the field of sleep research. 
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1. INTRODUCTION 

 Previous studies have shown that different brain 
structures and neurotransmitters play a key role in the 
regulation of the sleep-wakefulness states. Stimulation, 
lesion and unit recording experiments showed that different 
brain regions, including brainstem, hypothalamus, thalamus 
and basal forebrain, are involved in the regulation of the 
vigilance states. For instance, chemical lesions in the 
preoptic basal forebrain zone of cats and rats cause insomnia 
[1,2], whereas the stimulation of the preoptic area/anterior 
hypothalamus (POAH) increases sleep [3]. Inasmuch as the 
studies of the mechanisms related with the control of the 
sleep and waking increased during the last years, the purpose 
of this review is to examine the current stage of our 
knowledge regarding the sleep/wakefulness-promoting 
structures and neurochemical-inducing factors associated to 
these physiological functions.  

2. THE NEUROANATOMICAL MECHANISMS OF 
WAKEFULNESS 

2.1. Basal Forebrain 

 Neuroanatomical structures related with the promotion of 
waking involve several nuclei of the central nervous system 
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(CNS). In this regard, the input to the cerebral cortex is 
augmented by lateral hypothalamus and acetylcholine 
(ACh)-containing neurons of the basal forebrain which are 
electrophysiological active during alertness and they are 
referred as “wake-on neurons” [4]; Fig. (1). 

 Lesions in basal forebrain area produce severe loss of 
sleep [5]. For example, Kalinchuk et al. [6] have shown that 
after injections of the immunotoxin 192 immunoglobulin G 
(IgG)-saporin (saporin) in rats, there was an 88% cholinergic 
cell loss, coupled with an enhancement in waking.  

2.2. Lateral Hypothalamus 

 It has been described that lateral hypothalamic neurons 
start to fire before the transition from sleep to W whereas 
several studies have indicated that specific neurons send 
excitatory projections to diverse wake-promoting areas such 
as adrenergic, histaminergic, dopaminergic, and cholinergic 
nuclei [7]; Fig. (1). Different pieces of evidence have shown 
that lesions of lateral hypothalamus enhance waking [8-11]. 
For instance, injection of the neurotoxin hypocretin-2-saporin 
(490ng/0.5μL), directly to the lateral hypothalamus produced 
an increase in waking [5], suggesting that lateral 
hypothalamus has an active role to activate wake-inducing 
systems. 

 Hypocretin (HCRT) neurons are located between the 
fornix and the mammillothalamic tracts in the lateral 
hypothalamus from where HCRT fibers project throughout 
the brain and spinal cord, including several areas implicated 
in the regulation of the sleep-wake cycle [12-18]. Those 
projections excite the main arousal systems, including the 



Basic Sleep Mechanisms: An Integrative Review Central Nervous System Agents in Medicinal Chemistry, 2012, Vol. 12, No. 1    39 

cholinergic neurons placed in the laterodorsal tegmental 
nucleus [15] or basal forebrain [19], histaminergic [20], 
noradrenergic [21], and serotoninergic [22, 23]. Activation 
of the thalamocortical neurons [21] and the projections to the 
basal forebrain regions, including the medial preoptic area, 
the medial septal area and the substantia innominata [24], 
has been demonstrated as well. 

2.3. Tuberomammillary Nucleus 

 Histaminergic neurons have been identified in the 
posterior hypothalamus in the region of the 

tuberomammillary nucleus (TMN) [25-27]. These neurons 

project throughout the CNS sending afferents towards the 
cerebral cortex, the amygdala, and the substantia nigra. 

Additionally, TMN receives input from the hypocretinergic 

neurons in the lateral hypothalamus as well as from 
GABAergic neurons in the ventrolateral preoptic area 

(VLPO), which strongly contribute to the firing rate of these 

histaminergic neurons in relation to sleep [28]. TMN firing 
pattern has been linked to wake since histaminergic neurons 

display an increase in the electrophysiological firing rate 

during alertness compared to sleep [25, 29, 30]. In 
concordance with these findings, lesions in the TMN neurons 

induce changes in the sleep-wake cycle, including sleep 

deficits and enhancements in waking [31]. This data suggest 
that histaminergic neurons of the TMN have an active role in 

promoting alertness. 

2.4. Brainstem 

 The regions in the rostral reticular formation send 

projections to the forebrain through two main pathways 

critical for the regulation of the sleep-wake cycle. The first 
pathway ascends dorsally through the lateral hypothalamus 

to the basal forebrain. The dorsal ascending pathway projects 

to multiple thalamic nuclei, which in turn have widespread 
projections to the cortex [33-35]. The neurons in the rostral 

pons and caudal midbrain area are the primary source of 

ascending projections to the dorsal thalamic nuclei. These 
neurons fire rapidly during W, but their rate becomes slower 

during SWS and resume rapid firing again during REM sleep 

(classified as “wake-on/REM-on neurons”).  

 The second pathway that involves the ventral descending 

pathway of the brainstem projects rostrally through the 

lateral hypothalamus, terminating on the magnocellular 
neurons in the substantia innominata, medial septum, and the 

diagonal band [32, 33, 35, 36]. This pathway originates in 

the noradrenergic nucleus, the locus coeruleus, the 
serotoninergic dorsal and the median raphe nuclei. These 

cells fire actively during W and become inactive during SWS 

and REM sleep Fig. (1). 

 On the other hand, the locus coeruleus (LC) contains the 

majority of noradrenaline (NA) neurons in the brain [38]. 
This nucleus modulates cortical activation and behavioural 

arousal by diffuse projections through the forebrain, 

brainstem and spinal cord [24, 38]. Electrophysiological 
studies have shown that the firing pattern of LC neurons is 

highest during W than during sleep [39-41] suggesting that 

LC has an important neurobiological role in the modulation 
of alertness.  

 The role on the modulation of alertness by serotoninergic 

(5-HT)-containing neurons placed in the brainstem, 

specifically the raphe nuclei [42], has been described. These 
neurons display a higher burst discharge during waking 

whereas its activity is decreased during SWS and cease firing 

during REM sleep. The phenotype of these cells has been 
defined as “wake-on neurons” [43-48]. 

 Finally, an additional element modulating W is the 
pontomesencephalic tegmentum which also contains ACh 

neurons [49]. This area projects to the thalamocortical 

system where ACh cells stimulate cortical neurons [38, 50, 
51]. Besides, the electrophysiological studies have reported 

that the ACh-containing pontomesencephalic neurons in the 

laterodorsal and pedunculopontine tegmental nucleus 
discharge at higher rates during W and decrease their activity 

during SWS increasing once again their activity through 

REM sleep. These cells have been named “wake/REM-on 
neurons” [52, 51]. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). The brain distribution of the wake-related nuclei. The 
presence of the neuroanatomical and neurochemical elements that 
participate in the promotion of alertess are represented as follows: 
Tuberomammillary nucleus (TMN, histamine), lateral 
hypothalamus (LH, hypocretin), locus coeruleus (LC, 
noradrenaline), raphe dorsal (serotonin), and basal forebrain and 
PPT/LDT nuclei (cholinergic). Laterodorsal tegmental nucleus 
(LDTg)/pedunculopontine tegmental nucleus (PPTg) send 
projections to the thalamus, additionally LC, raphe nuclei, TMN, 
LH and thalamus project to cortex to induce alertness. 
Abbreviations: LC, locus coeruleus; LDT, laterodorsal tegmental 
nucleus; LH, lateral hypothalamus; TMN, tubermammillary 
nucleus; PPT, pedunculopontine tegmental nucleus. 

 

3. THE NEUROCHEMICAL MECHANISMS OF 

WAKEFULNESS 

3.1. Glutamate 

 As stablished by Moruzzi and Magoun [53], the 
brainstem reticular formation (RF) is critical for maintaining 
cortical activation and behavioural arousal of the waking 
state. Projections from neurons concentred gathered in the 
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oral pontine and mesencephalic RF ascend into the forebrain 
where they stimulate cortical activation via a dorsal relay in 
the thalamus and a ventral relay through the hypothalamus 
and basal forebrain. It is known that neurons concentrated in 
the caudal pontine and medullary RF facilitate postural 
muscle activity. On the other hand, the neurons of the diffuse 
thalamocortical projections relay which project to the 
cerebral cortex to stimulate cortical activation use glutamate. 
We can assume that glutamate-containing neurons represent 
the backbone of the W-activating and behavioural-arousal 
systems [38, 54]. Furthermore, extracellular levels of 
glutamate have been found higher during waking than during 
sleep [55-57].  

 Pharmacological studies have shown that infusions of 

glutamatergic agonists, such as NMDA elicit alertness [58-
60]. These results suggest that glutamate has an active 

physiological role in cortical activation that underlies the 

behavioral arousal. 

3.2. Noradrenaline  

 The wake-promoting properties of noradrenaline (NA) 

involves 1-adrenoreceptors that are associated with a 
depolarization through closing K

+
 channels whereas the  

2-adrenoreceptors are linked with a hyperpolarization by  

the opening K
+
 channels. Drugs that antagonize  

1-adrenoreceptors facilitate sleep onset, probably by 

blocking the postsynaptic action of NA on different target 

neurons. By contrast, 2-adrenoreceptor antagonists delay 
sleep. Opposite to the effects described above, the 2-adreno-

receptors agonists inhibit the NA release and decrease W 

[61]. Importantly, drugs that block the uptake of NA enhance 
or prolong waking [62-64]. Regarding this, NA activates 

other wake-promoting systems and inhibits those involved in 

the sleep modulation [65]. 

 Additionally, microdialysis experiments have shown that 

the extracellular contents of NA decline progressively from 
W to sleep [57, 66, 67] whereas the lesion of the neurons in 

LC induces a decrease in waking [68-70]. 

3.3. Dopamine 

 Dopamine (DA)-containing neurons are placed in the 

substantia nigra and ventral tegmental area which are 

important for arousal [38, 71]. The neurons in these areas 
project to the striatum, basal forebrain and cerebral cortex. It 

has been reported that higher electrophysiological activity of 

these neurons is associated with arousal [72-75].  

 On the other hand, pharmacological experiments have 

demonstrated that drugs that block the uptake (such as 

cocaine) or stimulate the release of DA (including 
amphetamine or modafinil) have arousing effects [76, 77]. 

Moreover, lesions in ventral tegmental area or substantia 

innominata induce an enhancement in waking [78, 79]. The 
role of NA modulating W has been also supported from 

biochemical studies. In this regard, evidence from 

microdialysis experiments has shown that extracellular 
contents of NA are enhanced during W whereas its levels are 

decreased across sleep [57, 80, 81]. 

 

3.4. Serotonin 

 The relationship between serotonin (5-HT) and the sleep-
wake cycle modulation has been described through different 
experimental approaches. 5-HT-containing neurons have 
been localized in the raphe nuclei [42] and the lesion of these 
cells induces an increase in W and diminishes SWS [82, 83]. 

 Furthermore, the extracellular levels of 5-HT have been 
determined with microdialysis and measured by high 
performance liquid chromatography in several brain 
structures, including preoptic area, hippocampus, and 
medullary reticular formation. Results have shown that 5-HT 
levels are enhanced during natural or prolonged waking 
when compared to levels during natural sleep [84, 80-87]. 

3.5. Acetylcholine 

 Acetylcholine (ACh)-containing neurons of the basal 
forebrain have been linked with cortical activation [88]. 
Molecular studies have described the role of ACh on sleep-
wake modulation. For example, Fos protein encoded by the 
immediate early gene c-Fos is often used as a marker of 
neural activation. Using this experimental approach, it was 
described that ACh-containing neurons are active during W 
as a result from a sleep deprivation period [89]. Supporting 
these findings, Lee et al. [4] reported that ACh-containing 
neurons are electrophysiologically active during W since 
their firing pattern was found higher during the active period 
than during the resting phase in rats.  

 Pharmacological studies have shown the neurobiological 
modulating role of ACh on the sleep-wake cycle. Early 
studies using acetylcholinesterase inhibitors showed that 
when administered alone, REM sleep was increased [88]. 
Moreover, it has been described that ACh acts on nicotinic 
and muscarinic receptors to induce waking [90, 50].  

 The role of ACh in the modulation of waking has been 
strenghted with microdialisys experiments. Thus, the 
extracellular concentration of ACh displays dependent-state 
variations. Diverse studies have shown that levels of ACh 
are higher during W compared to SWS [55, 91, 92].  

3.6. Histamine 

 The main source of histamine is the cluster of neurons 
placed in the TMN of the posterior hypothalamus [93, 94]. 
The wake-inducing properties of histamine involve the 
activation of several elements of the arousal system through 
H1 and H2 receptors [95]. The hypothesis that the activation 
of the histaminergic system promotes waking [25, 96-98] is 
currently accepted since its pharmacological inhibition 
induces sleep. Regarding this, Tashiro et al. [95] showed that 
antihistamine drugs that act on H1 receptors induce 
somnolence. 

 Different experimental approaches to examine the role of 
the histaminergic system include gene-manipulated mice 
[99], lesioned rats [35] as well as microdialysis, which show 
wake-dependent variations in histamine contents [101]. 
Taken collectively, the evidence indicates the active 
neurobiological role of histamine modultaing alertness. 
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3.7. Hypocretin 

 The hypocretins (HCRT; 1 and 2, also named as orexin A 
and B, respectively) are two neuropeptides derived from the 
same precursor whose expression is restricted to a few 
thousand neurons of the lateral hypothalamus [13, 18, 101, 
102].  

 At the present time, it has been established that the 
HCRT system is associated to both canine and humans 
narcolepsy [103]. Diverse evidence supports this idea. For 
instance, in a study of post-mortem brains of human 
narcoleptics, a massive reduction in the number of HCRT-
containing cells (85-98%) compared with healthy controls 
was discovered [104, 105]. On the other hand, it was 
reported that narcoleptic patients present reduced levels of 
HCRT in cerebrospinal fluid (CSF) [106-111]. The CSF 
measurements of levels of HCRT provide a valuable 
diagnostic tool for narcolepsy, separating narcolepsy from 
other sleep and neurological disorders [111, 112].  

 The treatment of narcolepsy includes pharmacological 
approaches. However, an alternative therapeutical option has 
been suggested. Regarding this, the transplants of HCRT 
neurons could be considered as a new experimental approach 
to treat narcolepsy [113]. For instance, time-course of 
survival of grafted HCRT neurons into the pons of adult rats 
was analyzed at 1, 3, 6, 9, 12, 24, or 36 days after grafting. 
Immunohistochemistry results showed that HCRT neurons 
were present in the graft zone at day 1 post-grafting and 
there was a steady decline in the number of HCRT neurons. 
Finally, on day 36, HCRT neurons that survived in the pons 
had morphological features that were similar to mature 
HCRT neurons in the adult lateral hypothalamus, suggesting 
that these neurons might be functionally active [114, 115]. 

3.8. Neuropeptide S 

 Neuropetide S (NPS) is a recently described neuropeptide 
of 20 amino acid residues which bears no similarity with 
other neuropeptide families [116]. NPS precursor protein 
mRNA is strongly expressed in a few hundred neurons in the 
locus coeruleus area. NPS binds with nanomolar affinity to a 
G-protein coupled receptor, NPSR, in transfected cells and 
increases the intracellular calcium levels with high potency 
[117]. NPSR mRNA is widely distributed throughout the brain 
and significant expression can be detected in multiple arousal 
systems, including the midline thalamic nuclei, which relay 
extensive input from the brainstem reticular formation to 
cortical regions and are thus important in regulation of arousal 
[117, 118]. In addition, high level of NPSR expression is 
localized in the lateral and posterior hypothalamus, regions 
well known to influence states of vigilance, whereas high 
levels of NPS mRNA have been also reported in the 
laterodorsal tegmental nucleus (LDTg) in the mouse brain, 
region which contains cholinergic neurons and is critical to the 
maintenance of REM sleep and arousal [117].  

 In icv infussions of 0.1 and 1.0 nmol of NPS in mice, this 
peptide stimulates spontaneous locomotor activity and 
consistently induces anxiolytic-like effects in a battery of 
behavioral tests (open field, light-dark, elevated plus maze, 
marble burying). In addition, a significant dose-dependent 
increase of W was observed one hour after treatment with 
NPS, whereas the amounts of SWS and REM sleep were 

decreased during the same period of time compared to their 
respective controls. In contrast, two and four hours after NPS 
administration, the amount of SWS increased significantly, 
compared to control animals, probably due to a rebound 
process. The increase in W was due to a significant increase 
in the number of episodes, whereas the increase in SWS was 
due to an increase in the duration of SWS episodes [117]. 

 Other studies where the activity of NPS as a wake-
promoting factor was tested, showed that icv infusion of the 
peptide in rats increased W even in conditions of high sleep 
demand, as it was demonstrated in sleep deprivation studies. 
Infusion of NPS in the lateral ventricles induces c-fos 
activation in a variety of arousal-promoting nuclei, including 
the lateral hypothalamus. Due to the fact that NPS receptors 
are localized in HCRT-containing neurons in the lateral 
hypothalamus, the posibility that NPS can modulate alertness 
at least in part through activation of the HCRT system, 
results interesting altought additional studies are need to 
probe such hypothesis. 

4. THE NEUROANATOMICAL MECHANISMS OF 

SLEEP 

4.1. Suprachiasmatic Nucleus 

 Two basic mechanisms in sleep modulation have been 
recognized: The homeostatic and a circadian mechanism. 
The first one dictates that a given quota of sleep duration and 
intensity needs to be obtained over a short term and that 
current needs depend on the individual’s immediate history 
of sleep-wake. For example, sleep deprivation as defined by 
the interruption of sleep, measured by both behavioural and 
EEG/EMG means, causes a “rebound” effect where, at the 
nearest available opportunity, an individual will sleep with a 
significant increase in the duration and intensity to 
compensate for lost sleep [119-121].  

 On the other hand, the circadian mechanism presumably 
located into the suprachiasmatic nucleus (SCN) of the 
hypothalamus, sets the time frame for sleep during each 
cycle. For instance, in diurnal species, the SCN promotes 
arousal during the day whereas the loss of input from this 
nucleus to hypothalamus causes a decrease in sleep [122-
124]. Neuroanatomical studies have shown that most of the 
SCN neurons project to the dorsomedial hypothalamus, 
which in turn projects to the VLPO nucleus suggesting the 
presence of a neuroanatomical network which may reflect 
the basis of the sleep promotion.  

4.2. Basal Forebrain 

 The pioneer experiments showed that electrical 
stimulation of the basal forebrain in cats produced sleep 
[125, 126]. The idea that the sleep-inducing effect of basal 
forebrain stimulation could be due to the inhibition of the 
activity of the TMN is currently accepted, since this structure 
sends inhibitory projections to the TMN Fig. (2), thus it 
makes reliable this hypothesis [94, 96, 127].  

4.3. Lateral Preoptic Nucleus and Median Preoptic 

Nucleus 

 The neuronal discharge of the wake-promoting systems 
declines rapidly at sleep onset. A key element of sleep-
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related inhibition of waking lies at the neurons located in the 
lateral and median preoptic nucleus. Diverse pieces of 
evidence have shown that preoptic neurons are strongly 
activated during sleep. For instance, these cells exhibits 
sleep-wake state-dependent discharge patterns that are the 
reciprocal of that observed in the arousal systems [96, 127-
129]. Besides, it has been demonstrated that the median 
preoptic nucleus (MnPN) neurons displays 76% cells that 
exhibits elevated discharge firing rates during sleep 
compared to W [129, 130].  

 The majority of preoptic sleep regulatory neurons 
synthesize the inhibitory neurotransmitter GABA [131, 132]. 
In addition, anatomical evidence supports the hypothesis that 
GABAergic neurons in the MnPN and lateral preoptic 
nucleus (LPO) exert inhibitory control over the wake-
promoting systems during sleep [129, 133-135].  

4.4. Ventrolateral Preoptic Nucleus 

 This nucleus is located in the preoptic area of the anterior 
hypothalamus. According to current evidence, this nucleus 
represents a “sleep-generating” centre, which opposes the 
arousing effect of the posterior hypothalamus [136, 137]; 
Fig. (2). Up to date, two major sleep-related nuclei have been 
described –the first one located in the ventrolateral preoptical 
nucleus (VLPO) is associated with SWS and the second one, 
located dorsal and medial to the VLPO nucleus named the 
extended VLPO, which has been linked with REM sleep 
generation [138, 139]. The neurons placed in the VLPO 
contain the inhibitory transmitter GABA and galanin and 
these cells project to the arousal neurons in the hypothalamus 
and the brainstem.  

4.5. Brainstem 

 Ach-containing neurons are the major source of upper 
brainstem input to the thalamic-relay nuclei, as well as to the 
reticular nucleus of the thalamus. These clusters of neurons 
are known as the pedunculopontine tegmental and the 
laterodorsal tegmental nuclei (PPTg and LDTg, respectively) 
[140, 141]; Fig. (2). Stimulation of the PPTg nucleus 
promotes REM sleep [142, 143] whereas its lesion 
diminishes it [144, 145]. 

 Considerable experimental evidence has suggested that 
cholinergic PPTg neurons are critically involved in the 
regulation of both waking and REM sleep. Besides, the 
wake-on/REM-on cells that display a pattern of firing 
exclusively during REM sleep have been described and 
named “REM-on neurons” [144-150].  

 Finally, REM sleep is induced by the action of 5-HT, 
NA, GABA, nitric oxide or HCRT which activates 
cholinergic neurons within the PPTg [146, 143, 151]. 
Furthermore, microinjections of 5-HT, NA and adenosine 
into the PPTg modulate sleep [152]. 

5. THE NEUROCHEMICAL MECHANISMS OF 

SLEEP 

5.1. Gamma-Aminobutyric Acid 

 Gamma-aminobutyric acid (GABA) is the main 
inhibitory neurotransmitter in the brain. Hypnotic drugs 
(such as fluorazepam) and anaesthetics promote sleep due 

their binding to the benzodiazepine-recognition site in the 
GABAA receptors [153, 156]. Thus the activity of the 
GABAA receptor has been proposed as enhancer of SWS 
[153, 157]. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2). The sleep-inducing centres in the central nervous system. 

Ventrolateral preoptic nucleus (VLPO) activity induces sleep, 

which is the result of the inhibition of the wake-promoting areas. 

Additionally, VLPO send projections to LH, TMN, raphe nuclei, 

PPT/LDT and LC. Abbreviations: LC, locus coeruleus; LDT, 

laterodorsal tegmental nucleus; LH, lateral hypothalamus; TMN, 

tubermammillary nucleus; PPT, pedunculopontine tegmental 

nucleus; VLPO, ventrolateral preoptic nucleus. 

  

 Evidence suggesting the active role of the basal forebrain 
modulating sleep is provided from pharmacological studies. 
Basal forebrain encloses neurons, then the administration 
into the posterior hypothalamus of GABA agonists such as 
muscimol increase sleep [1, 159].  

 GABAergic neurons placed in the basal forebrain and 
preoptic area have been electrophysiologically recorded 
during the sleep-wake cycle and display a higher firing 
pattern during SWS than during waking [128, 129, 159-161]. 
This result has been supported by studies showing that 
GABA-containing neurons in the preoptic area display an 
increase Fos expression during sleep [89]. 

 The modulation of sleep via GABA has been described 
as follows: GABAergic neurons from the basal forebrain and 
preoptic area project to the posterior lateral hypothalamus 
where they appear to innervate many groups of wake-
modulating neurons, such as HCRT [162, 163]. An alternate 
pathway involves the projections from basal forebrain and 
preoptic area to the TMN nucleus or directly to the LC nuclei 
[96, 164]. Moreover, GABA is also present in other regions 
such as thalamus inhibiting the thalamocortical relay neurons 
[165]. Finally, the extracellular levels of GABA are also 
related with sleep generation. Microdialysis experiments 
have shown that levels of GABA are increased during sleep 
in comparison to waking [166-168]. 
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5.2. Acetylcholine 

 The pioneer studies demonstrating the active role of ACh 
in the modulation of REM sleep were conducted by Raúl 
Hernández-Peón [169-171]. Since then, it has been accepted 
that REM sleep is generated by the activity of specific 
cholinergic nuclei [172, 173]. Microinjection of carbachol 
into the rostral pontine tegmentum of the cat induces a state 
that is comparable to REM sleep. Additionally, muscarinic 
receptors have been related with REM sleep generation, as 
shown in diverse pharmacological studies [174-177].  

 The role of ACh in sleep modulation has been studied 
from different experimental approaches, including 
microdialysis. Extracellular contents of ACh have been 
found to be higher during REM sleep compared to W and 
SWS [55, 178].  

 In addition, the mechanism of sleep modulation via ACh 
suggests that the brainstem GABAergic neurons may control 
REM sleep. Recently, Brown et al. [179] reported that mice 
expressing green fluorescent protein (GFP) under the control 
of the GAD67 promoter (GAD67-GFP knock-in mice) 
exhibit numerous GFP-positive neurons in the central gray 
and reticular formation. They found that neurons were 
GABAergic. GFP-positive neurons were tested with 
pharmacological agents known to promote or inhibit REM 
sleep, finding that GFP-positive neurons were excited by a 
cholinergic agonist (carbachol). Supporting these findings, 
Marks et al. [180] found that the injection into the rat 
nucleus pontis oralis of the reticular formation of the 
antagonist of GABAA receptors (bicuculline methiodide) as 
well as gabazine (GBZ) increased REM sleep. Pre-injection 
of the muscarinic antagonist atropine completely blocked the 
REM sleep-increase by GBZ. These results suggest that 
GABA modulates REM sleep and involves the cholinergic 
system. 

6. SLEEP-INDUCING FACTORS 

6.1. Cytokines and Hormones 

 Several growth factors (GFs) are implicated in sleep 
modulation, among these molecules are interleukin-1beta 
(IL-1 ), tumor necrosis factor-alpha (TNF ) and growth 
hormone-releasing hormone

 
(GHRH). Pharmacological 

studies have shown that systemic or central administration of 
GHRH enhances

 
SWS. Conversely, antibodies against 

GHRH (Obál et al., 1991, 1992) or injecting somatostatin 
[181] or its analog [182] decreases SWS. Regarding this, 
Szentirmai et al. [183] showed that unilateral microinjection 
of GHRH decreased EEG delta wave power, while the 
application of a higher dose enhanced it. These effects on 
EEG delta wave power occurred during SWS but not during 
REM sleep. Additionally, it was described that cortical 
GHRH mRNA increased with sleep deprivation whereas the 
administration of GRHR fails to reduce the SWS observed in 
mutant and transgenic animals with a defect in GHRHergic 
activity. The neuroanatomical mechanism of sleep-inducing 
effects of GHRH suggests that neurons placed in the anterior 
hypothalamus/preoptic region could be the responsible of 
modulating sleep [184]. Taken together these results suggest 
that GHRH modulates sleep. 

 GFs involved in the sleep modulation are tumor necrosis 
factor (TNF) and interleukins, which are a group of 
cytokines related with the immflamation response. The 
function of the immune system depends on the interleukins, 
however there is also evidence showing the active role of the 
interleukins modulating the sleep-wake cycle. For example, 
IL-1  and TNF-  has been linked with sleep promotion. 
Pharmacological studies have shown that administration of 
exogenous IL-1  or TNF-  increases SWS and their 
inhibition significantly reduces the sleep amount. On the 
other hand, brain levels of IL-1 and TNF correlate with sleep 
propensity. Regarding this last issue, it has been observed 
that after sleep deprivation, their levels are increased 
compared to control animals. Moreover, the diurnal variation 
of TNF-  mRNA and IL-1  mRNA in brain shows its 
highest levels during sleep periods.  

 Genetic studies show that mice lacking either the TNF 
55-kD receptor or the IL-1 type I receptor present a 
diminution in sleep amounts [185]. Recently, Kapás et al. 
[186] assessed the spontaneous and influenza virus-induced 
sleep profiles in mice deficient both 55-kDa and 75-kDa 
TNF-

 
receptors [TNF-2R KO]. During the nighttime, TNF-

2R KO mice had a decrease of SWS compared to wild type 
animals whereas during the nighttime,

 
KO animals showed a 

significant enhancement of REM sleep. Furthermore, viral
 

challenge (mouse-adapted influenza X-31) enhanced SWS 
and

 
decreased REM sleep in both strains.  

 It has been proposed that IL-1 and TNF are part of a 
complex biochemical cascade regulating sleep, which 
includes nitric oxide, GHGH, nerve growth factor, among 
other biological elements. Endogenous substances 
moderating the effects of IL-1 and TNF include anti-
inflammatory cytokines such as IL-4, IL-10, and IL-13. 
Clinical conditions, such as infectious disease, alter IL-1 or 
TNF activity which has been associated with changes in 
sleep [187] http://www.ncbi.nlm.nih.gov/sites/entrez? 
Db=pubmed&Cmd=Search&Term=%22KruegerJM%22%5
BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubm
ed_ResultsPanel.Pu-bmed_DiscoveryPanel.Pubmed_RV 
AbstractPlus. Regarding this, sleepiness is a common 
perception during most infectious diseases, including viral 
infections.  

6.2. Adenosine 

 Adenosine (AD) is a product of natural metabolism 
which has been linked with sleep modulation Fig. (4). 
Microdialysis studies have confirmed that cholinergic cells 
in the basal forebrain are presumably responsible for the 
accumulation of AD during natural or prolonged waking 
[188-192]. The mechanism proposed suggests that AD is 
released from cholinergic neurons in basal forebrain and then 
acts on AD-1 autoreceptors [193, 194]. The release of AD 
decreases the activity of the cholinergic neurons blocking the 
inhibition of the GABAergic neurons in the VLPO to induce 
sleep [148, 190, 192]. However, our group has described that 
cholinergic neurons placed in the basal forebrain are not 
necessary for the accumulation of AD in the basal forebrain 
[195].  

 AD may act via A1 receptors to promote sleep, but an A2a 
receptor antagonist can block it. Scammell et al. [196] 
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showed that the infusion of the A2a receptor agonist 
CGS21680 increased SWS as well as the expression of Fos 
in the VLPO whereas the administration of the A1 receptor 
agonist N(6)-cyclopentyladenosine decreased REM sleep. 
These findings suggest that an adenosine A2a receptor 
agonist may increase the activity of VLPO neurons and then, 
modulate the inhibition of multiple wake-promoting regions. 
Additional evidence supports the findings described above. 
Methippara et al. [197] showed that A1 receptor stimulation 
or inhibition of AD transport by NBTI induced waking 
whereas A2a receptor stimulation induced sleep whereas 
CGS21680 applied to the subarachnoid space underlying the 
rostral basal forebrain increased sleep but decreased the 
extracellulr levels of histamine [198]. 

6.3. Prostaglandins 

 Derived from arachidonic acid, prostaglandins (PGs) are 
sleep-inducing lipids Fig. (4) as shown by different 
approaches. The infusion of PG, type D2, or PGD2 receptor 
agonists promotes sleep [199-204]. The role of PGD2 on 
sleep has been supported from microdialysis evidence 
showing that its extracellular concentration is higher during 
sleep than during waking [205]. The molecular action of 
PGD2 modulating sleep involves PGD2 synthase activity 
gene expression, activation of AD2a receptors, as well as the 
inhibition of the histaminergic system [200, 2004, 206-208]. 

6.4. Anandamide 

 During the 1970s-1980s several experiments were carried 
out in order to evaluate the effects of the cannabinoids on 
sleep. The main conclusion of these studies was that 
cannabinoids increase both SWS and REM sleep [209-215]. 

 Since anandamide (ANA) was the very first 
endocannabinoid described [216] the interest about its 
potential cannabinoid-like effects on sleep was raised. But 
what might be the neurobiological role on sleep of the 
endocannabinoid system? The very first approach to answer 
this question was carried out by Santucci and co-workers in 
1996 [217]. They injected to rats the CB1 cannabinoid 
receptor antagonist, SR141716A and a significant increase in 
W as well as a diminution in SWS was found. The results 
suggested that the wake-inducing properties of SR141716A 
might be due to the blocking of the CB1 cannabinoid 
receptor. 

 Under other conditions, icv injections in rats of ANA 
induced an opposite effect that the one observed by Santucci 
and colleagues. Our group found a significant decrease in W 
and an enhancement in SWS and REM sleep after ANA 
administration [218] and these effects were more significant 
after being injected into the PPTg. Since ANA promoted 
sleep, it was hypothesized that administration of SR141716A 
before the injection of ANA might block the effects on sleep. 
Indeed, blocking the CB1 cannabinoid receptor efficiently 
prevented the sleep-inducing effects of ANA [219].  

 The CB1 cannabinoid receptor activates a phospholipase 
C (PLC) suggesting different elements that could be 
involved in the sleep-inducing properties of ANA. We found 
that the injection of the PLC inhibitor (U73122) 
administered before ANA application, diminished the sleep-

iducing effects of this endocannabinoid. The results 
suggested that the sleep-inducing properties of ANA require, 
besides the CB1 cannabinoid receptor, the PLC enzyme 
[220].  

 Finally, we hypothesized that ANA would be promoting 
sleep via acting on a sleep-inducing factor such as AD. Thus, 
using microdyalisis means it was found that systemic 
administration of ANA induced a significant enhancement in 
the levels of AD as well as sleep [220].  

 Despite the evidence provided above, there is indeed a 
lack of data to make a reliable conclusion about the 
neurobiological role of ANA on sleep. However, we have 
hypothesized the following mechanism Fig. (3): The CB1 
cannabinoid receptor has been localized in the pons and the 
basal forebrain, as demonstrated by others [221, 222]. Once 
ANA binds to the CB1 cannabinoid receptor would activate 
the cholinergic neurons placed in these regions [38]. It is 
known that activation of the CB1 cannabinoid receptor as 
well as the administration of cannabinoid agonists enhances 
the release of ACh [223, 224]. As mentioned previously, the 
release of ACh from the brainstem and/or the basal forebrain 
has been described to occur during sleep [225, 226]. In 
parallel, it might be also possible that activation of the CB1 
cannabinoid receptor in cholinergic neurons of the basal 
forebrain and/or the brainstem could activate the thalamus 
inducing cortical desynchronization [227]. There is solid 
evidence showing that the projections from the brainstem 
and the basal forebrain to the thalamus are important 
elements for sleep modulation [38, 228, 229]. This 
hypothetical mechanism of ANA modulating sleep is 
supported from different evidence. For instance, a diurnal 
variation of this endocannabinoid in CSF, pons, 
hippocampus, and hypothalamus in the rat has been 
described. In CSF, ANA displayed an increase in its 
concentration during the lights-on period and remarkable 
decreases in its values are present during the lights-off period 
(the active phase of the rodents). ANA showed the maximum 
values during the dark phase in the pons suggesting that this 
endocannabinoid is likely to be accumulated in parenchyma 
during the lights-off period (when the animal is awake) and 
then, released into the CSF in order to reach target regions 
that turn to modulate sleep [229]. 

 Since the endocannabinoid system compromises 
endogenous ligands, receptors and enzymes, then it was 
imperative to study the neurophysiological role on the sleep 
modulation of the enzyme that hydrolyzes ANA: The fatty 
acid amide hydrolase (FAAH), which additionally catalyzes 
the degradation of the satiety factor oleoylethanolamide 
(OEA) and the analgesic-inducing lipid 
palmitoylethanolamide (PEA). Despite it has been previously 
demonstrated previously that the inhibition of the FAAH by 
the drug URB597 increases levels of ANA, OEA and PEA in 
the brain of rats [230], no direct evidence was available 
about the pharmacological effects of these compounds on 
sleep modulation. In experiments designed to resolve these 
doubts, it was found that after icv administrations of 
URB597, OEA or PEA (10, 20μg/5μL) during the lights-on 
period of rats, it was found an increase in W and a decrease 
in SWS in a dose-dependent fashion. Additionally, compared 
to controls, c-Fos immunoreactivity in hypothalamus and 
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dorsal raphe nucleus was increased in rats that received 
URB597, OEA or PEA. Furthermore, using microdialysis 
probes placed in the nucleus accumbens, the extracellular 
contents of DA were collected and analyzed using HPLC 
means and it was found that the tested compounds enhanced 
the levels of DA. These findings indicate that that inhibition 
of the FAAH, via URB597, displays neurobiological 
properties modulating the sleep-wake cycle [230].  

 

 The endocannabinoid system involves also the putative 
ANA membrane transporter (AMT), which has been target 
of study since it has been proposed as part of the mechanism 
by which ANA induces neurobiological effects. Previous 
studies have shown that the injection of the AMT (VDM 11) 
enhances endogenous levels of ANA and potentiate its 
pharmacological actions [231]. However, no direct evidence 
was available about the role of the sleep modulation by 
increasing the endogenous levels of ANA. Then, it was 
described that injections of VDM-11 reduced W and 
increased REM sleep during the lights-off period (active 
phase of the rats). In addition, SR141716A partially reversed 
these sleep effects. Finally, VDM-11 injected in rats 
enhanced c-Fos expression in sleep-related brain areas, such 
as the anterior hypothalamic area, paraventricular thalamic 
nucleus, and PPT [232]. The plethora of positive 
pharmacological effects observed with the endocannabinoid 

system make the ligands, receptors and enzymes highly 
attractive for developing novel therapeutic approaches to 
treat sleep disorders. 

6.5. Urotensin II 

 Urotensin II (UII) is a cyclic dodecapeptide with strong 
vasoconstrictive activity in the periphery [233, 234]. 
Autoradiographic binding experiments in rat brain have 
shown that 125I labeled-UII binds to the PPTg nucleus, the 
lateral dorsal tegmental area, and the lateral septal, medial 
habenular, and interpeduncular nuclei. Also, in situ 
hybridization reveals that UII receptor (UII-R) mRNA 
colocalizes with choline acetyltransferase [235]. The 
distribution of UII-R in cholinergic nucleus of the 
mesopontine tegmental area suggested that UII may be 
involved in functions regulated by ACh, such as the sleep-
wake cycle. In agreement with this hypothesis is the finding 
which demonstrated that adult rats treated with an icv 
microinjection of 0.6 nmol of UII, resulting in a significant 
increase of 16.49% in the amount of REM sleep compared to 
animals treated with saline. Likewise, bilateral 
administration of 0.6 pmol of UII into PPTg nucleus showed 
an increase of 13.30% of REM sleep compared to controls 
[236]. In both experiments, the increase in REM sleep was 
due to a significant increase in the number of REM sleep 
episodes. Another key finding was that UII excited bNOS-
immunopositive

 
PPTg neurons by activating a slow inward 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (3). The sleep-inducing properties of anandamide (ANA) involve diverse cellular elements such as the CB1 cannabinoid receptor, 

phospholipase C (PLC) as well as the adenylate cyclase (AC). Activation of the CB1 cannabinoid receptor activates the PLC, which in turns 

facilitate the K
+
 conductance and blocks the Ca

2+
 channel. Additionally, the activation of the CB1 cannabinoid receptor blocks the synthesis 

of cAMP via AC. The proposed mechanism of sleep-inducing properties of ANA involves the activation of the CB1 cannabinoid receptor 

placed on cholinergic neurons in the basal forebrain and/or PPT/LDT nuclei which would increase the release of acetylcholine (ACh) and/or 

adenosine (AD) and then, promote sleep. Abbreviations: AC, adenylate cyclase; ACh, acetylcholine; AD, adenosine; ANA, anandamide; 

Ca
2+

, calcium; CB1 cannabinoid receptor;  K
+
, potassium; PLC, phospholipase C. 
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current without affecting
 
recorded bNOS-immunonegative 

neurons, suggesting that local application
 
of UII specifically 

targeted the cholinergic subpopulation of
 
the PPTg [236].  

 Together with the fact that UII-Rs are expressed in PPTg 
nuclei, these results suggest that UII peptide is involved in 
the regulation of the cholinergic mechanisms that control 
REM sleep Fig. (4). However, additional studies are needed 
to determine whether UII acts at

 
central cholinergic terminals 

and to valorate its possible effects on blood flow. 

7. GENE EXPRESSION AND SLEEP 

 Sleep and waking differ significantly in terms of 
behavior, metabolism, and neuronal activity, and also with 
respect to the expression of certain genes. The best known of 
such genes studied so far are immediate-early genes (IEGs), 
including c-fos which shows an enhancement in the mRNA 
levels after a few minutes of stimulation. The protein of  
c-fos, Fos, is synthesized shortly thereafter and can be  
detected for several hours. The expression of c-fos can thus 
serve as a marker of neuronal activity. Using mRNA 
differential display and cDNA microarray technology to 
systematically establish the differences in gene expression 
that occur between sleep and waking, it has been 
demonstrated that 10,000 transcripts of the genes expressed 
in the cerebral cortex are up or down-regulated between 
sleep and natural or after prolonged waking. Most of the 
transcripts upregulated during spontaneous W and/or sleep 
deprivation correspond to known genes and can be grouped 
in few functional categories. Additionally, the transcription 
factor CREB is differentially phosphorylated

 
depending on 

the behavioral state of the animals [237-239]. 

 The role of the gene expression during sleep has been 
studied from different perspectives. For instance, the basal 
expression of the proto-oncogene c-fos was analyzed by 
Northern blot analysis in different regions of the rat brain 
during 24h. Grassi-Zucconi et al. [240] found a spontaneous 
oscillation of c-fos mRNA expression in animals that were 
kept in a 12h light/12h dark cycle. Under these experimental 
conditions, c-fos mRNA was detectable during the resting 
period of the rat, and was higher during the active period. 
Supporting these findings, the mRNA differential display 
and cDNA microarrays to screen approximately 10000 
transcripts expressed in the cerebral cortex of rats after 8h of 
sleep, spontaneous waking, or sleep deprivation was 
analyzed. Forty four genes showed higher mRNA levels after 
W and/or sleep deprivation compared to the sleep period, 
whereas 10 genes were upregulated after sleep. This data 
provided a classification of genes in the following 
categories: IEG /transcription factors (including Arc, c fos, 
CHOP, IER5, NGFI-A, NGFI-B, N-Ras, Stat3), growth 
factors/ adhesion molecules (BDNF, TrkB, F3 adhesion 
molecule, just to mention a few), genes related to energy 
metabolism (such as Glut1 and, Vgf), vesicle- and synapse-
related genes (chromogranin C and synaptotagmin IV), 
chaperones/heat shock proteins (including BiP, ERP72, 
GRP75, HSP60 and HSP70), neurotransmitter/hormone 
receptors (nicotinic acetylcholine receptor 2, adrenergic 
receptor 1A and 2, GABAA receptor 3, glutamate NMDA 
receptor 2A, glutamate AMPA receptor GluR2 and GluR3), 
neurotransmitter transporters (glutamate/aspartate transporter 

GLAST, Na
+
/Cl

-
), enzymes (c-jun N-terminal kinase 1, 

serum/ glucocorticoid-induced serine/threonine kinase), and 
a miscellaneous group (calmodulin, cyclin D2, LMO-4) 
[237-239, 241].  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. (4). Recently, hormones, peptides and lipids have been 

identified as endogenous compounds that could participate 

collectively in the generation and maintenance of the sleep-wake 

cycle. The varieties of substances which have been shown to alter 

sleep are known as sleep-inducing factors. 

 

 Glut1 is a gene related to energy
 
metabolism that is active 

during W and is a major glucose transporter
 
responsible for 

the transfer of glucose from blood to neurons
 
and glia. It can 

be drawn the hypothesis that Glut1 induction could represent 
an alternative molecular mechanism

 
by which the CNS 

responds to the enhancement in energy requirements during 
W. Furthermore, it has been demonstrated that the mRNA 
levels of heat shock proteins and molecular chaperones such 
as HSP60, HSP70 are also enhanced after 8h of alertness 
[242]. 

 Taken together the evidence, it is recognized that there 
are significant changes in the expression of the IEG, c-fos 
and Fos protein in the brain between W and sleep. However, 
such expression differences implicate changes in 
transcriptional regulation across behavioral states and 
suggest that different transcription factors would be affected 
as well. Fos and Jun proteins are encoded by proto-
oncogenes acting as IEG in that they are rapidly induced by 
different kinds of stimuli in the CNS. These two proteins 
bind to DNA regulating gene transcription, and thus 
determining the specificity of the neuronal response to the 
applied stimulation. Regarding this, the expression of the 
IEGs, c-fos and junB in the rat brain has been mapped in 
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response to sleep deprivation. Thus, animals confined to 
slowly rotating wheels for 3 or 6h to induce sleep 
deprivation displayed an increase c-fos expression in regions 
of the CNS such as medial preoptic area, cortex, and anterior 
and posterior paraventricular thalamic nuclei. Additionally, 
JunB was increased in response to the sleep deprivation in 
regions such as medial preoptic area, cortex, caudate-
putamen and amygdala [240, 243]. In addition, Terao et al. 
[244] examined in mouse brain the expression of seven 
fos/jun family member mRNAs (including c-fos, fosB, fos 
related antigen (fra)1, fra-2, junB, c-jun, and junD) and other 
IEG mRNAs (such as egr-1, egr-3, and nur77) after 6h of 
sleep deprivation period and 4h of recovery sleep right after 
the period of prolonged waking. They found that the levels 
of c-fos and fosB mRNA were elevated during prolonged 
waking in cerebral cortex, basal forebrain, thalamus and 
cerebellum. Moreover, nur77 and erg-1 mRNA expression 
across conditions was similar to c-fos and fosB, whereas  
egr-3 mRNA was elevated in the cortex during both 
prolonged waking and the respective sleep recovery period. 
The importance of the identification of the genes that 
regulate the sleep-wake cycle has a potential to elucidate the 
genetics of sleep disorders in humans. 

8. CONCLUSIONS 

 Sleep-wake cycle is maintained by different systems 
[162, 204, 245, 246]. Waking is generated and maintained by 
the activity of glutamate-, NA-, DA-, 5-HT-, HCRT-, ACh-, 
and histaminergic systems. These centres diffuse projections 
to the cerebral cortex, subcortical relays and brainstem [38]. 
According to diverse single-unit-recording studies, the firing 
rates of these nuclei have been described as higher during W, 
to diminish their activity during SWS and becoming silent 
across REM sleep. It has been hypothesized that these 
neurons are silenced by the activity from other cells which 
are active during sleep [41, 36, 38]. Opposite to that view, 
during the resting period, sleep induction is related with the 
activity of brain areas such as lateral hypothalamus, VLPO. 
Additionally, the participation of the release of molecules 
such as ACh, GABA, and sleep-inducing factors are also 
required.  

 The study of endogenous chemicals that produce sleep 
has also contributed to the understanding of the complex 
mechamisms that regulate sleep. The concept of endogenous 
factors was originally proposed by Ishimori [247] and Pieron 
[248]. They proposed that as a result from the prolonged 
periods of waking, there was an accumulation of a 
hypothetical endogenous substance that will induce sleep. At 
present, molecules from different origin such as brain, blood, 
cerebrospinal fluid, urine or even skeletal residues of 
bacteria [183, 249-253] have been isolated and identified as 
sleep-inducing factors such as PGD2, AD, cytokines and 
ANA [148, 187, 205, 226]. 

 Finally, the molecular changes occurring in the brain 
during the sleep-waking cycle involve the expression of 
~10,000 transcripts that are expressed in the cerebral cortex 
and several brain structures. A few hours of W, either 
spontaneous or forced by sleep deprivation, increase the 
expression of a group of genes, including the IEG 
/transcription factors, genes related to energy metabolism, 

growth factors/adhesion molecules, chaperones/heat shock 
proteins, vesicle- and synapse-related genes, neurotrans-
mitter/hormone receptors, neurotransmitter transporters, and 
enzymes, among others. Sleep, on the other hand, induces 
the expression of a few unknown transcripts [239].  

 Given the expansion of the knowledge in this 
neurobiological area, it is ambitious to describe all the 
multitude of the neuroanatomical, neurochemical and genetic 
systems involved in sleep modulation, including the 
pharmacological approaches. However, in this article we 
reviewed the current understanding of the brain circuits, 
molecules and genes that regulate the sleep-wake cycle. 
Future research should be directed at findind the missing 
elements that could explain how all the pieces that compose 
the sleep-wake machinery interact to originate such a 
complex function.  
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ABBREVIATIONS 

ACh = Acetylcholine 

AD = Adenosine 

AMT = ANA membrane transporter 

ANA = Anandamide 

CNS = Central nervous system 

CSF = Cerebrospinal fluid 

DA = Dopamine 

EEG = Electroencephalogram 

EMG = Electromyogram 

FAAH = Fatty acid amide hydrolase 

GBZ = Gabazine 

GABA = Gamma-aminobutyric acid 

GFP = Green fluorescent protein 

GFs = Growth factors 

GHRH = Growth hormone-releasing hormone 

HCRT = Hypocretin 

IEGs = Immediate-early genes 

IgG = Immunoglobulin G 

IL-1  = Interleukin-1beta 

LPO = Lateral preoptic nucleus 

LDTg = Laterodorsal tegmental nucleus 

LC = Locus coeruleus  

MnPN = Median preoptic nucleus  

NPS = Neuropeptide S 
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NA = Noradrenaline 

OEA = Oleoylethanolamide 

PEA = Palmitoylethanolamide 

PPTg = Pedunculopontine tegmental nucleus 

PLC = Phospholipase C 

POAH = Preoptic area/anterior hypothalamus 

PG = Prostaglandin 

PGD2 = Prostaglandin D2 

REM = Rapid eye movement 

RF = Reticular formation 

5-HT = Serotonin 

SWS = Slow wave sleep 

SCN = Suprachiasmatic nucleus 

TMN = Tuberomammillary nucleus 

TNF = Tumor necrosis factor 

TNF  = Tumor necrosis factor-alpha 

UII = Urotensi II 

VLPO = Ventrolateral preoptic area 

W = Wakefulness 
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